

V8 - Experiment Procedure "Off to Mars"

GENERAL INFORMATION

Principal Investigator	
Autor(s)	Dr. Seda Özdemir-Fritz and OeWF education team
Version number	1
Last edited on	27-Oct-2024

SHORT EXPERIMENT DESCRIPTION

A voyage to Mars is no simple thing, one has to consider many things in order to make a transition from Earth to Mars possible. In this lesson, students will - under some simplifying assumptions discuss and graphically show the advantages of the Hohmann Transfer compared to flying straight at Mars when it is closest to Earth. They will graphically model orbits, calculate launch windows, and predict the next opportunity for a Mars mission using simplifying assumptions.

For details information and graphics, please see the resource: https://www.jpl.nasa.gov/edu/teach/activity/lets-go-to-mars-calculating-launch-windows/

HARDWARE CHECKLIST

Graph paper, quadrille ruled (one per student)	
Cardboard (as big as paper or bigger, one per student	
Push pins (two per student)	
String (30cm, one per student)	
Calculator	
Planetary heliocentric longitudes for appropriate years	

PROCEDURE

CALCULATE LAUNCH WINDOW

Step	Action	NOTES	Duration	Check
1	Explain to students the basics of		15 min.	
	the Hohmann-Transfer and			
	remind them of Kepler's Second			
	Law additionally discuss the			
	concept of heliocentric longitude			
2	Explain to the students the		5 min.	
	simplifications:			
	The orbits of Earth and Mars are			
	circular and centered on the sun			
	Earth and Mars travel at constant speeds			
	The orbits of Earth and Mars are in the same plane			
3	Have students find the length of		10 min.	
	the semi-major axis of the			
	Hohmann transfer orbit in			
	astronomical units (AU), given			
	that the average distance from			
	Mars to the sun is 1.52 AU			
4	Have students use string and		10 min	
	pushpins to draw assumed-			
	circular orbits of Earth and Mars			
	about the sun on graph paper			
5	Draw approximation of the	Students will need to compute the location	6min.	
	Hohmann-Transfer orbit	of the second focus (one focus is at the sun) for the Hohmann-Transfer orbit. The focal		
		distance is 0.26 AU, so if the sun is at (0,0),		
		the other focus will be at (-0.52, 0) To draw Hohmann-Transfer orbit, place		
		pushpin at each focus of the ellipse and use		
		a loop of string equal in length to twice the		
		sum of the length of the semi-major axis of		
		the ellipse and the focal length		
6	Have students use Kepler's Third		10 min.	
-	Law, to determine the period of			
	the Hohmann-Transfer orbit and			
	then the travel time to Mars along			
	this orbit			
7	Using the daily motions of Earth		10 min.	
	and Mars, compute ideal relative			
	position of Earth and Mars during			
	launch			
8	Let students determine:	Use planetary heliocentric longitude	15 min.	
	approximately when the next			
	opportunity for launch to Mars is			

NOTES:

• Use visuals or animations (if available) to demonstrate the Hohmann Transfer concept for better understanding.

- Discuss the relevance of accurate launch windows in reducing fuel consumption and mission costs.
- Encourage students to reflect on how simplifying assumptions differ from real-world orbital mechanics.